
 

 

 

Analysis of Data From an 
Admissions Test With Item 
Models 

April 2005 
RR-05-06 

Research
Report

Sandip Sinharay

Matthew Johnson 

 

Research & 
Development 
 



Analysis of Data From an Admissions Test With Item Models 

Sandip Sinharay 

ETS, Princeton, NJ 

Matthew Johnson 

Baruch College, NY 

April 2005 

 



As part of its educational and social mission and in fulfilling the organization's nonprofit charter 

and bylaws, ETS has and continues to learn from and also to lead research that furthers 

educational and measurement research to advance quality and equity in education and assessment 

for all users of the organization's products and services. 

ETS Research Reports provide preliminary and limited dissemination of ETS research prior to 

publication. To obtain a PDF or a print copy of a report, please visit: 

http://www.ets.org/research/contact.html 

Copyright © 2005 by Educational Testing Service. All rights reserved. 

EDUCATIONAL TESTING SERVICE, ETS, the ETS logo, 
Graduate Record Examinations, and GRE are registered 

trademarks of Educational Testing Service. 

 

 



Abstract

Item models (LaDuca, Staples, Templeton, & Holzman, 1986) are classes from which it

is possible to generate/produce items that are equivalent/isomorphic to other items from

the same model (e.g., Bejar, 1996; Bejar, 2002). They have the potential to produce large

number of high-quality items at reduced cost. This paper introduces data from the first

known application of items automatically generated from item models in a large-scale

assessment and deals with several research questions associated with the data. We begin

by reviewing calibration techniques for the analysis of data involving item models; one

method assumes that the items are isomorphic, while the other treats items generated from

the same item model as distinct, but related. A major question for these type of data is

whether these items are isomorphic, that is, if they behave the same psychometrically. This

paper describes a number of rough diagnostic measures and a rigorous statistical diagnostic

to assess the extent of isomorphicity in the items generated from an item model. Finally,

this paper discusses the issue of scoring, an area that needs more research, with data

involving item models.

Key words: Bayesian hierarchical model, expected response function, item family, item

model
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1. Introduction

A large pool of high-quality items is necessary for the smooth operation of any large-scale

testing program, especially those with flexible administration times, to address concerns

regarding item exposure and potential disclosure. In an attempt to produce quality items

at reduced expenses, there is an increasing interest in generating items automatically. In

an ongoing project at ETS, items are automatically generated using item models (a term

borrowed from LaDuca, Staples, Templeton, & Holzman, 1986), classes from which it is

possible to generate/produce items that are equivalent/isomorphic to other items from the

same model (e.g., Bejar, 2002).

As a simple example (borrowed from Thissen-Roe & Hunt, 2004), an item model on

assessing mathematical aspects of graduated rates, calculations with percents, and algebraic

manipulation may look like the following:

In a certain state, for taxable incomes over y, income taxes are calculated as r

percent of the first y of taxable income plus t percent of the amount greater than

y. If the taxes calculated for a certain taxable income were w, what was the

taxable income?

Several instances are then generated from this model by replacing the variables y, r, t, and

w with appropriate numbers and choosing appropriate distractors (if this is a multiple

choice item).

Items from (or belonging to) a single item model, whether produced by automatic item

generation (AIG) systems (Irvine & Kyllonen, 2002) or rigorous manual procedures, are

related to one another through the common generating model and therefore constitute

a family of related items. The items in the same family are called siblings; they assess

the same subject matter content and are interchangeable psychometrically (Bejar et al.,

2003). They have similar conceptual and psychometric/statistical properties. Naturally,

use of such items calls for use of calibration models that can account for the dependence

structure among the siblings. Glas and van der Linden (2001, 2003) suggested one such

model for dichotomous items. The model assumes a three-parameter (3PL) logistic model

(Birnbaum, 1968) to start with and then assumes a normal prior distribution on the item
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parameters, the mean vector, and the variance matrix of the normal prior depending on the

item family to which the item belongs. Johnson and Sinharay (in press) generalized Glas

and van der Linden’s model to take into account item families with polytomous items; this

paper suggests useful graphical summaries, family expected response function (FERF), and

family score function, for item families, as did Sinharay, Johnson, and Williamson (2003).

A recent large-scale operational test, the Graduate Record Examination r© (GRE r©),

pretested items automatically generated from item models in its quantitative section. There

are a number of research questions associated with the study, mostly regarding calibration

of the items or item models and scoring examinees; one may also want to know about the

success of the item modeling process. This paper attempts to answer these questions from

a psychometrician’s point of view.

There is no unanimous nomenclature in automatic item generation literature. What we

call item model is also called item form (Hively, Patterson, & Page, 1968), item template

(e.g., Deane & Sheehan, 2003), schema (Singley & Bennett, 2002), item shell (Glas & van

der Linden, 2003), and so on, by other researchers. Similarly, what we call a sibling may be

referred to as a clone (Glas & van der Linden, 2001, 2003) or an instance or an isomorph or

a variant, and so on, elsewhere. We refer to all the siblings generated from an item model

as an item family (a term also used in Glas & van der Linden, 2001, 2003), for the simple

reason that the siblings are related to each other; the term item family is not meant to

imply that there is a parent item within each family.

2. The Data

Items generated from item models were pretested in a recent administration of the GRE.

Test developers and researchers created item models for the GRE quantitative section after

studying the features of items from previous operational item pools and choosing a number

of these items as the basis of item models (Steffen, Graf, & Levin, 2004). There was one

item model for each of four main content areas: remainders (MRE), linear inequality (MLI),

quadrilateral perimeter (MQP), and probability (MPR). For each of these four areas, one

submodel, each corresponding to Difficulty Levels I (very easy), II (moderately easy), III

(moderately hard), and IV (very hard), was produced to cover a wide range of difficulty
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for each content area and to ensure homogeneity within siblings. Therefore, there are 16

submodels involved in all, one for each combination of content area and difficulty. We

denote them as MRE-I (MRE, very easy); MRE-II, MRE-III, and MRE-IV (MRE, very

hard); and MLI-I, and so on. According to our terminology introduced in Section 1, we

treat items generated from each of these submodels as part of an item family. Henceforth,

Item Families 1, 2, 3, and 4 refer to submodels MRE I, II, III, and IV, respectively; Families

5-8 refer to MLI I-IV; Families 9-12 refer to MQP I-IV; and Families 13-16 refer to MPR

I-IV. Ten items (siblings) from each submodel, intended to be isomorphic, and created

using the Math Test Creation Assistant (TCA) software developed at ETS (Singley &

Bennett, 2002), were administered as part of the pretest section of the GRE; they did not

count towards the operational score of the examinees. All items were multiple choice with

five options.

As an example, an item generated from a MLI-IV (linear inequality very hard) item

model is the following:

The statement “t − 3 ≤ −1 or 3 − t ≥ 13” is equivalent to which of the following?

A. t ≤ 2

B. t ≤ −10

C. − 2 ≤ t ≤ 13

D. − 9 ≤ t ≤ 3

E. − 10 ≤ t ≤ 2

Option A is the correct answer for the item.

The data were collected during operational computer-based testing for the GRE in

January and February 2003. The operational computer-based GRE has four sections:

analytical writing, quantitative, verbal, and a variable section (quantitative or verbal and

used for collecting pretest data on new items). The model-based items were embedded

within the 28-item quantitative variable sections. Because the examinees did not know

that these were pretest items, it can be assumed that the examinees were motivated while

responding to these items. Each of the 32,921 examinees received only four model-based

items, a single sibling each from four submodels, and one item for each difficulty level. To
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avoid potential speededness and context effects, the within-section item positions of these

model-based items were controlled—any of the 40 items for any given content area appeared

in the same position. Table 1 gives the composition and sequencing of the model-based

items in four configurations.

Table 1.
Composition and Sequencing of the Model-Based Items for the GRE Data

Content Item Configuration Configuration Configuration Configuration
position 1 2 3 4

Remainder 04 Very easy Very hard Mod. hard Mod. easy
Lin. equality 06 Mod. easy Very easy Very hard Mod. hard

Quad. perimeter 12 Mod. hard Mod. easy Very easy Very hard
Probability 19 Very hard Mod. hard Mod. easy Very easy

Each examinee received items from only one of the four configurations given in the last

four columns in the table. The number of examinees receiving any of these items varied

from 663 to 1,016, with the average being 821.

2.1 The Research Questions

This study is the first known application of automatically generated items or model-based

items in a large-scale assessment used in making high-stake decisions. Of the two other sets

of studies involving automatically generated items, the British Army Recruitment Battery

(BARB), described in Wright (2002), had 1,273 examinees only, while the one in Hornke

(2002) was on intelligence test used in making low-stake decisions. Therefore it is important

to study the GRE data carefully. This paper first performs simple analyses of the data.

The next question is how to perform calibration for these data. To answer that, this

paper analyzes the data set using the Bayesian hierarchical model of Glas and van der

Linden (2001) and simpler alternatives and then discusses the findings.

Although research has concentrated on calibrating the item families, there has not been

much work on the scoring of the examinees in these situations when the calibration of

the families already has been done. This paper examines the issue of scoring under the

Bayesian hierarchical model in detail. If a researcher has used the hierarchical model to

calibrate the item families, the FERFs (Sinharay et al., 2003) provide a straightforward
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way to score individuals incorporating the variability in the family parameters, as this

paper shows. This idea of scoring has some similarities with the idea of expected response

function of Lewis (1985, 2001). A comparison is also provided to the situation where one

did not use the hierarchical model to score individuals, but rather applied a simple 3PL

model treating the siblings the same (as suggested by Hombo & Dresher, 2001).

Bejar et al. (2003) commented that the feasibility of item modeling rests in part

on whether the siblings are sufficiently isomorphic (i.e., there is no difference in item

characteristics between siblings within a family). Therefore, one objective of our analysis

will be to study to what extent the siblings are isomorphic for these data.

2.2 Structure of the Remainder of the Paper

Section 3 describes in detail Glas and van der Linden’s (2001, 2003) hierarchical model

and simpler alternatives. Section 4 discusses results from simple statistical analyses of

the data and those from the application of the models described in the previous section.

Section 5 suggests a formal statistical test of isomorphicity. Section 6 discusses scoring

in detail. Finally, the paper concludes with a summary of the findings and thoughts on

possible future directions.

3. The Statistical Models for Analyzing Data Involving Item Families

One way to analyze data involving item families is to apply the identical siblings model

(ISM) suggested by Hombo and Dresher (2001), which assumes a single response function

(for example, the 3PL response function for multiple choice tests) for all items in an item

family. Effectively, given a response data matrix with rows for examinees and columns for

items, fitting an ISM is equivalent to fitting an IRT model after pooling the data columns for

all items in each item family into one column. This model, though easy to fit, is restrictive

as it ignores variation within an item family. By ignoring the within-family variation, the

ISM analysis incorrectly treats siblings within a family as if they were interchangeable, that

is, it does not matter which sibling an individual receives, which implies that responses of

two individuals to the same sibling are independent given the family item characteristic

curve (ICC). The slope (α) of the resulting item response function will likely be too large,
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suggesting that there is more information available from responses to siblings drawn from

that family, and the standard errors of the item parameters will likely be too small.

Another approach is to use the unrelated siblings model (USM) that assumes a separate,

unrelated item response function for all siblings, ignoring the family membership. While the

USM can be fitted by standard software, this has the disadvantage that each item has to be

individually calibrated before operational use, making the USM unusable in most practical

applications of model-based items (see the discussion in Johnson & Sinharay, in press).

A more formal way to analyze data involving item families is to apply the related

siblings model (RSM), a hierarchical model (Glas & van der Linden, 2001, 2003) whose first

component is a simple IRT model, such as the 3PL model:

Pr(Yj = 1 | θ, aj, bj, cj) = cj + (1 − cj) logit−1 (aj(θ − bj)) , (1)

where Yj is the score of an examinee with ability θ on Item j and logit−1(x) = ex

1+ex ·

After making the transformations αj ≡ log(aj), βj ≡ bj, and γj ≡ logit(cj), Glas and

van der Linden use a normal distribution to relate the item parameters of items within the

same item family as

(αj, βj, γj)
′|λI(j), T I(j) ∼ N3(λI(j), T I(j)), (2)

where I(j) is the item family to which Item j belongs. The population distribution for

the latent abilities is usually assumed to be N (0, 1). The family mean vector λI(j) can

be partitioned as λI(j) = (λαI(j)
, λβI(j)

, λγI(j)
)′, and the diagonal elements of the family

variance T I(j) will be referred to as τ 2
αI(j)

, τ 2
βI(j)

, and τ 2
γI(j)

respectively.

This paper further assumes

λI(j) ∼ N (µλ, V λ) , µλ = (0, 0, logit(0.2))′, V λ = 100I, (3)

where I is an identity matrix, and assumes independent inverse-Wishart prior distributions

(e.g., Gelman, Carlin, Stern, & Rubin, 2003, pp. 574-575) on the family variances:

T−1
I(j) ∼ Wishartν(S)· (4)

The prior in (4) implies that the prior mean of T −1
I(j) is νS, and that a priori there is

information that is equivalent to ν observations of the item parameter vector ηj. We use
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ν = 4, the smallest number to ensure that the density is finite everywhere, and assume

S = 10
ν
I3.

Glas and van der Linden (2003) discussed how to choose items from item families using

a Bayesian item selection algorithm in a computer adaptive test. They used a criterion that

required the item family selected at any point to have the minimum expected posterior

variance. They commented that the smaller the variation within a family, the better the

test adapted to the examinee ability.

3.1 Family Expected Response Function

To graphically summarize the output from an RSM for an item family, Sinharay et al.

(2003) suggested the FERF that described the probability that an examinee with ability θ

correctly responded to a randomly selected item from the item family. The FERF for item

family k is obtained as

P (θ|k) ≡

∫

λk,T k

∫

η

P (θ|α, β, γ)φ3(η|λk, T k)dηf(λk, T k|X)dλkdT k, (5)

where P (θ|α, β, γ) ≡ logit−1γ+(1−logit−1γ) logit−1 (eα(θ − β)), η = (α, β, γ)′, φ3(η|λk, T k)

is the density function of the multivariate normal prior distribution on η and f(λk, T k | X)

is the joint posterior distribution of λk and T k given the response matrix X.

Sinharay et al. (2003) and Johnson and Sinharay (in press) demonstrated that a plot

showing the estimate of the FERF of the family along with the estimates of the item

response functions of the items provided useful information that included some idea of

isomorphicity of the items within each family.

3.2 Estimating the Model and the Family Expected Response Function

Glas and van der Linden (2001) and Sinharay et al. (2003) described Markov chain

Monte Carlo (MCMC) algorithms to fit the RSM. The latter paper suggested using Monte

Carlo integration to estimate the FERF defined in (5) and discussed how to attach a 95%

prediction interval with the estimate.

Step 1 required in the estimation process for the k-th item family consists of the

following two substeps: (a) generate a sample of size M from f(λk, T k | X); and (b) for
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each of the above M draws of (λk, T k), generate m values of the item parameter vector ηj

from the multivariate normal distribution Φ3(ηj|λk, T k).

Step 2, which uses the sampled item parameters from Step 1, repeats the following

substeps for a number of values of θ: (a) for each of the Mm draws of ηj obtained in Step 1,

compute P (θ|α, β, γ); (b) take the mean/median of the above probabilities as an estimate

of P (θ|k); and (c) the 2.5th and 97.5th percentiles of the Mm probabilities above form an

approximate 95% prediction interval to attach with the estimate obtained above.

This work uses 100 equidistant values of θ in the interval (-4,4) in Step 2 to estimate the

FERF and uses M = 1, 000, m = 10.

4. The Analysis of the GRE Data

4.1 Preliminary Analysis

Figure 1 shows the proportion correct scores of the items for the different item families.

For each content area (MRE, MLI, MQP, or MPR—shown along the x-axis), there are four
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Figure 1. Proportion corrects for different item families for the GRE Data.
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vertical lines, one each for the four difficulty levels that define the submodels, along which

are plotted the proportion correct for the items in that submodel. A symbol 1 corresponds

to an item of Difficulty Level I (very easy), 2 is for Difficulty Level II (moderately easy),

and so on.

Each family has its own pattern; the only common pattern being that the items in

Difficulty Level 1 are easier on average than those in Level 2, which are in turn easier

than those in Level 3, and so on. The difference between the difficulty levels vary over the

families. For MRE, there is a substantial overlap of any two successive difficulty levels.

The same is true for MPR with the exception of Levels 2 and 3. For MLI, there is a big

difference between the first two levels and the last two. For MQP, Level 1 is much easier

than the other three, the latter three being close together. There is some variation of

proportion correct scores within any family; we will examine later if the magnitude of the

variation is significant statistically or practically.

There are a few more interesting patterns. For example, within MLI, Difficulty Level 4,

the items seem be divided into two different clusters—one cluster has proportion corrects

all close to 0.15 and another cluster has proportion corrects close to 0.3. This family will

be discussed later in Section 4.3.

It is possible to perform a rough check by testing the hypothesis of equality of the 10

proportion corrects within any submodel (because under isomorphicity, the items within

an item family have the same true proportion corrects) using the χ2 test statistic (e.g.,

Rohatgi, 1976)
10∑

i=1

ni(p̂i − p̂)2

p̂(1 − p̂)
, p̂ =

∑
i nip̂i∑
i ni

,

with symbols having the usual meaning and with an asymptotic χ2
9 distribution. This

test results in values of the observed χ2 statistic as shown in Table 2. Note that the 95th

percentile of the reference distribution is 16.9 and the 99th percentile is 21.7—so all of the

entries in the table are statistically significant at 5% level and 15 out of 16 at 1% level. The

table summarizes the level of variation within each item family as a number.

Thus the preliminary analysis of the data shows that although the siblings do not appear

to be very different from each other, the item families are not isomorphic statistically.
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Table 2.
Values of the χ

2 Statistic for a Rough Test of Isomorphicity

Difficulty level
Model 1 2 3 4

Remainder 64.0 206.0 240.9 118.3
Lin. equality 94.5 37.6 32.8 246.1

Quad. perimeter 17.7 67.1 110.9 42.0
Probability 144.2 314.9 76.2 276.1

4.2 Analysis Under USM and RSM Assumptions

Here, the USM takes the form of a simple 3PL model that treats the siblings as different

items. Using the notation in Section 3., the noninformative prior distributions assumed (as

in, e.g., Sinharay et al., 2003) are:

αj ∼ N(0, 102), βj ∼ N(0, 102) and γj ∼ N(−1.39, 10).

A problem here is that each examinee answers only four model-based items. Therefore, we

use the posterior means and standard deviations (SDs) from the operational quantitative

section (from a separate analysis performed during operational scoring of examinees) as

the means and SDs, respectively, of the normal prior distributions on the proficiency

parameters. It is possible to calibrate in a more rigorous manner (e.g., using all the

responses in the operational test), but this paper does not investigate that. Figure 2 shows

the estimated ICCs for the different item families.

Next, the RSM is fitted to the data. As with the USM analysis, we use the posterior

means and SDs from the operational quantitative section as the means and SDs,

respectively, of the normal prior distributions on the proficiency parameters. Figure 3 shows

the estimated FERFs along with the estimated ICCs. Table 3 shows the posterior median

of the variance of the item parameters.

Figure 4, similar to one used in Sinharay et al. (2003), summarizes the sampled values

of the mean difficulty λβk
(along the x-axis) and the within-family variance τ 2

βk
(along the

y-axis) for all item families. For each family, a point (denoted by the family name) shows

the posterior median of λβk
versus the posterior median of τ 2

βk
. A horizontal line around

a point denotes an approximate 95% equal-tailed credible interval for λβk
; a vertical line
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Figure 2. ICCs from USM analysis.
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Figure 3. FERFs from RSM analysis.
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Table 3.
Posterior Median of the Variance of the Item Parameters for the RSM Analysis

Item family Variance of Variance of Variance of
log-slope (τ 2

αI(j)
) difficulty (τ 2

βI(j)
) logit-guessing (τ 2

γI(j)
)

MRE-I 0.05 0.08 0.18
MRE-II 0.05 0.19 0.36
MRE-III 0.06 0.08 0.53
MRE-IV 0.08 0.11 0.14

MLI-I 0.05 0.10 0.23
MLI-II 0.05 0.06 0.17
MLI-III 0.07 0.09 0.14
MLI-IV 0.08 0.11 0.27

MQP-I 0.05 0.05 0.16
MQP-II 0.05 0.05 0.58
MQP-III 0.06 0.07 0.14
MQP-IV 0.06 0.06 0.15

MPR-I 0.06 0.09 0.22
MPR-II 0.05 0.19 0.37
MPR-III 0.05 0.07 0.10
MPR-IV 0.11 0.22 0.20

around a point denotes a similar credible interval for τ 2
βk

. Different line types are used for

different content areas.

4.3 Discussion of the Results

The content area MQP has item families that are on an average most isomorphic,

the ICCs for the siblings within each family being close to each other. MRE and MPR

seem to have the least isomorphic families. The families at Difficulty Level I are most

isomorphic, and Difficulty Level IV is probably the least isomorphic. For a number of

families (MRE-III, MRE-IV, MLI-II, MLI-IV, MQP-IV), the lower asymptotes of the

siblings differ substantially.

The lower asymptotes for a number of the item response functions differ across the

two analyses. Take, for example, the MQP-I family. Under the USM analysis, the

response functions all have an asymptote in the neighborhood of 0.2, the mean of the prior
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Figure 4. Posterior summary of the mean and variance of the difficulty parameters

for all the item families.

distribution on the asymptote. Under the RSM, these same items and their corresponding

FERF have an asymptote that is substantially lower. This phenomenon occurs because

of the prior structures placed on the lower asymptotes under the two models. The USM

assumes a common prior for all items, regardless of family measurement; these priors are

centered at 0.2. The items under the USM analysis do not have the power individually
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to pull their asymptotes away from 0.2; they are all shrunk towards that prior mean.

The RSM analysis, on the other hand, assumes a prior that forces the asymptotes for all

items within a family to be centered on some value, not necessarily 0.2. Under the RSM,

information is borrowed across the items within a family and the family mean asymptote is

allowed to differ from 0.2.

To interpret the values in Table 3, it will be helpful to remember that the between-family

variances of the mean family parameters (λI(j)) are 0.12, 1.70, and 2.48 for the slope,

difficulty, and guessing, showing substantial between-family variation for the difficulty and

guessing parameters, respectively. (For MRE, the between-family variances are 0.12, 1.51,

and 3.45; for MLI, they are 0.09, 3.76, and 1.92; for MQP, they are 0.07, 0.91, and 1.39; for

MPR, they are 0.12, 1.62, and 4.32.)

The estimated variances in Table 3 are the least for the slope parameters and the largest

for the guessing parameters and support the earlier finding that there is a substantial

variation of the guessing parameters within families. The variances correspond well to

the plot of the estimated ICCs from the USM (Figure 2) and RSM (Figure 3). The more

isomorphic a family is, the less variance for the difficulty and guessing parameters (the

variance for the slope parameters do not vary much). The table, as in the above mentioned

figures, shows that all submodels for content area MQP have low estimated variance of

difficulty parameters; the same variance is highest on an average for content area MPR.

Figure 4 shows that the item families are well spread out, especially with respect to

mean difficulty. As was found in Figure 1, MLI-IV is the most difficult family by a clear

margin. The content area MRE seems to have the easiest families. The estimated mean

difficulty for MRE-I is less than that of MLI-I, MQP-I, and MPR-I; the same is true for

the other difficulty levels. None of the credible intervals for the within-family variance

parameters contain the between-family variance of 1.70, providing enough statistical

evidence to suggest that the difficulty of items within each family is less variable than that

for items across families.

The family MLI-IV shows an interesting pattern in Figures 1, 2, and 3—the siblings

seem to belong to two different clusters. Graf, Steffen, and Lawless (2004) described this set

of 10 items in detail. Six of these siblings contain a type of distractor that corresponds to
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a popular misconception and is an attractive distractor. Consider the example item shown

in Section 2., which is one of these six siblings. The statement “t − 3 ≤ −1 or 3 − t ≥ 13”

is equivalent to t ≤ 2 or t ≤ −10 (i.e., t ≤ 2) so that the answer is A. However, a popular

misconception is to reverse the inequality and end up with the answer t ≤ 2 and t ≥ −10

(i.e., −10 ≤ t ≤ 2), which corresponds to the distractor E. About 40-50% of examinees

are found to select this distractor, bringing down the proportion corrects for these siblings

to about 15%, even lower than the chance level of 20%. On the other hand, four other

siblings use a different distractor type (not corresponding to a common mistake) instead of

the attractive distractor; as a result, about 5% examinees choose this distractor and the

proportion correct for these four siblings is about 30%. The outcome of this clustering of

the siblings (into two clusters) is the large value of the χ2-type statistic in Table 2 and large

estimated variances in Table 3.

The family MPR-II is another interesting family. Figures 1, 2, and 3 also show

substantial variation of the siblings within this family. In Table 2, the χ2 statistic is

largest for this family; Table 3 shows large variances for this family. These items asked

the probability, given that a number x belongs to a set I of integers, of the event E that

y = ax − b is positive/negative, where a and b are integers and I consists of consecutive

one-digit positive integers. The standard way of solving these items involves computing for

each possible value of x the value of y and then checking if the event E occurs. Graf (2003)

found that the larger the probability of E in an item of this type, the larger the number

of computations required, and the less the proportion correct for the item; the correlation

coefficient between the probability of E and the proportion correct is -0.91. The variance

between the difficulty of the items within this family is then caused by a varying number of

computations required for the items.

As Graf et al. (2004) commented, in order to make the item families more isomorphic,

one has to revise the item models by removing the above mentioned factors (distractors for

MLI-IV and number of computations for MLI-IV) and other similar ones. Of course, this

means substantially more work for the item writers.
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5. A Posterior Predictive Test of Isomorphicity

A question of substantial interest to test administrators in situations like this is when

the siblings from an item family can be considered isomorphic. The answer to the question

might determine the calibration and scoring procedure to be employed. If a family is found

to be nearly isomorphic, then the simple ISM approach (Hombo & Dresher, 2001) might be

enough; if not, one might need the more complicated hierarchical model. One may have a

rough answer by looking at Figures 1 to 4 and Tables 2 and 3, but the following discussion

suggests a formal statistical test to answer the question.

The ISM was fitted to the data, using the posterior means and SDs of the proficiencies

from the operational quantitative section as the means and SDs, respectively, of the normal

prior distributions on the proficiency parameters. The prior distributions on the item

parameters are

αj ∼ N(0, 102), βj ∼ N(0, 102) and γj ∼ N(−1.39, 10),

chosen to make the results comparable to the results from RSM. To assess if the model

fits the aspect of the data that is of primary interest here, we first compute the proportion

correct scores for all the 160 siblings. Then we compute the standard deviation (SD) of the

proportion corrects of the 10 siblings for each item family, giving a total of 16 within-family

SDs. If the SDs predicted under the ISM are close to the observed SDs, then we can be

confident that scoring using ISM in a future test with items from these item families will

not be unfair to the students as the variation in difficulty of the items generated from an

item family is exactly as predicted by the ISM. A number of posterior predictive data sets

(Guttman, 1967; Rubin, 1984; Gelman et al., 2003), which are natural predicted data sets

from a Bayesian point of view, were generated and the predicted SDs computed.

The left graph Figure 5 shows a plot of the observed and predicted SDs for the ISM. The

dots denote the observed values while the boxplots denote the empirical distribution of the

predicted SDs. The ISM severely underpredicts the within-family SDs—the assumption of

the same item response function for all the items within a family seems to be too restrictive

to reproduce the SDs accurately. The medians of the predicted SDs are all between 0.013

and 0.016. The 95th percentiles of the predicted SDs are all less than 0.023, while the
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Figure 5. The observed and predicted within-family standard deviation of proportion

corrects for the ISM (left graph) and RSM (right graph).

observed SDs are all larger than 0.023, a number of them being much larger than this value.

The right graph in Figure 5 shows a plot of the observed and predicted SDs for the

RSM. The model seems to explain the within-family SDs satisfactorily, with the posterior

predictive intervals containing the observed SD for all the item families.

These results show that the RSM performs better than the ISM in explaining the aspect

of the data that is of practical interest here. However, the more important question is what

the practical consequences are if we use the simple ISM instead of the better fitting but

more complicated RSM. The later part of the following section deals with this question.

6. Scoring in Future Tests

One major goal of the AIG initiatives is to be able to calibrate an item family (not the

individual items from it) once, and then use the items generated from it to score examinees

on future tests without the need to calibrate the items individually. Although research

has concentrated on calibrating the item families, there has not been much work on the

scoring of the examinees in these situations when the calibration of the families is already

done. Glas and van der Linden (2003) considered the issue of choice of optimal items in

computerized adaptive tests (CAT), which involved scoring individuals; however, they did
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not incorporate the variability in the family parameters in the scoring scheme. This section

discusses the issue of scoring with RSMs in detail.

Consider a future CAT involving J items generated from item models. Suppose the

observed response vector of an examinee with ability θ in such a test is (y1, y2, . . . yJ). Let

Bj denote the item parameter vector (aj, bj, cj)
′ for Item j. Further, let

P (yj|θ, Bj) ≡ P (Yj = 1|θ, Bj)
yj (1 − P (Yj = 1|θ, Bj))

1−yj ,

where P (Yj = 1|θ, Bj) is given by (1). The conditional posterior distribution given B̂j for

the examinee under the ISM is proportional to

p(θ)

J∏

j=1

P (yj | θ, B̂j), (6)

where p(θ) denotes the prior distribution on θ, B̂j being the item parameter estimate from

calibration under the ISM assumption.

Let us denote

P (yj|θ, ηj) ≡ P (Yj = 1|θ, ηj)
yj

(
1 − P (yj = 1|θ, ηj)

)1−yj
,

where ηj = (αj, βj, γj)
′ is the transformed item parameter vector for Item j. To score

individuals while using the RSM, Glas and van der Linden (2003) suggested obtaining the

posterior distribution of θ as proportional to

p(θ)

J∏

j=1

∫

ηj

P (yj | θ, ηj)N3(ηj|µ̂I(j), Σ̂I(j))dηj, (7)

where µ̂I(j) and Σ̂I(j) were the estimated mean and variance (from calibration under

the hierarchical model assumption) of the item parameters for the item family I(j) that

contains Item j. For future reference, scoring using (7) will be referred to as scoring under

RSM Scheme 1.

However, the above approach ignores the variability of µI(j)’s and ΣI(j)’s, and fixes

them at µ̂I(j) and Σ̂I(j). A complete Bayesian approach should take this variability into

account and obtain the posterior distribution of θ as proportional to

p(θ)
J∏

j=1

∫

ηj

P (yj | θ, ηj)N3(ηj|µI(j),ΣI(j))p(µI(j),ΣI(j)|X)dηjdµI(j)dΣI(j), (8)
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where p(µI(j),ΣI(j)|X) is the posterior distribution of the family parameters given the data

X from the calibration stage. For future reference, scoring using (8) will be referred to as

scoring under RSM Scheme 2.

Comparison of (6), (7), and (8) makes it obvious that scoring with the hierarchical

model is more complicated than with the ISM. To approximate the integrals in (7) and (8),

Monte Carlo integration (e.g., Gelman et al., 2003) is used. For (7), a random sample from

N3(ηj|µ̂I(j), Σ̂I(j)) is generated; the average of the quantity P (yj | θ, ηj) computed over

these sampled values provides an estimate of
∫

ηj
P (yj | θ, ηj)N3(ηj|µ̂I(j), Σ̂I(j))dηj. For

(8), for each draw of a posterior sample of µI(j) and ΣI(j), a number of ηjs are generated

from the prior distribution N3(ηj|µI(j),ΣI(j)), and finally the average of the quantity

P (yj | θ, ηj) is computed over all the sampled values of ηj. The standard errors for the

Monte Carlo integration were found to be too small in magnitude to affect the posterior

moments substantially. There is a close relation between the averaging in (8) and the

estimation of FERF in (5). For example, for any j, the integral in (8) is P (θ|I(j)) if yj is

1, and 1− P (θ|I(j)) if yj is 0. Therefore, once the RSM is fitted and the FERFs estimated,

the results can be used for scoring individuals under Scheme 2 without much additional

computation.

The approach of integrating out the item parameters in (7) and (8) is similar to the

approach of computing the expected response functions (ERF) suggested by Lewis (1985,

2001); Mislevy, Sheehan, and Wingersky (1993); Mislevy, Wingersky, and Sheehan (1994);

and, to some extent, Tsutakawa and Johnson (1990). The ERF approach suggests that

scoring individuals (when calibration has been performed) should be based on the following

posterior distribution of proficiency

p(θ)
J∏

j=1

∫

Bj

P (yj | θ, Bj)p(Bj)dBj, (9)

instead of the distribution p(Bj) quantifying the information on Bj from the calibration

process as defined in (6). For any item j, the integrand in (9) is defined as the expected

response function for that item. This work also examines scoring for ISM using the ERF

approach, but the results are very similar to those using (6) (because the ERF results in

little gain for moderate to large sample size, a phenomenon reported in Lewis, 2001, and in
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Tsutakawa & Johnson, 1990), and so we do not report the results here.

The findings from the above mentioned works on ERF provide us with rough guidelines

about the difference between the scores provided by ISM and RSM. One has to keep in

mind, though, that our context is slightly different from that with ERF; the ERF works

concentrate on the difference between (6) and (9) whereas we concentrate on the difference

between (6), (7), and (8). Lewis (2001) reported for Rasch models (using simulations), that

ignoring the uncertainty in item parameters (and fixing them at point estimates) resulted

in underestimation for high-ability students and overestimation for low-ability students, as

well as a decrease in the posterior SDs. The effect is mild for low to moderate uncertainty in

item parameters and becomes more severe as the amount of uncertainty in item parameters

increases. Tsutakawa and Johnson (1990) reported the same effect as in Lewis (2001) using

a calibration sample of 400 examinees, but also reported little effect for a calibration sample

of 1,000 examinees. Mislevy et al. (1994), using a calibration sample of 100 examinees,

found for the 3PL model that ignoring the variance in item parameters did not affect the

posterior means, but it considerably underestimated posterior standard deviations.

A slight complication for the GRE data is that for some item families the ISM point

estimates and the RSM estimates µ̂I(j) are slightly different, which is another source of

difference between the ability estimates provided by ISM and RSM.

6.1 Scoring for Four Items

Suppose the (future) CAT starts with four items and chooses Item 5 onwards based

on the posterior mean, under a N (0, 1) prior, obtained from the responses to the first

four items. We simulated responses of 250 examinees to four items each (one from each

content area) under the assumption that the parameters of an item from family I has

the distribution N3(µ̂I, Σ̂I). Because this is a short test, to maximize information on

θ, low-ability students (true θ ≤ −0.67 ≡ the 25th percentile of the standard normal

distribution) are assumed to receive items from very easy submodels, that is, they receive

one item each from families MRE-I, MLI-I, MQP-I, and MPR-I, and so on. The true

abilities were generated from a N (0, 1) distribution. Where required, the posterior median

of a parameter plays the role of a point estimate of the parameter.

21



Figure 6 compares posterior means and posterior SDs of examinee abilities for scoring

under the ISM, RSM Scheme 1, and RSM Scheme 2. This paper obtains these values by
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Figure 6. The comparison of posterior means and SDs of examinee abilities under the

ISM and the hierarchical model for four-item test for N (0, 1) population distribution.

running an MCMC algorithm using the posterior distributions given in (6), (7), and (8).

Table 4 shows the RMSE’s, that is, the quantity
√√√√ 1

n

n∑

i=1

(generating θi − posterior mean of θi)2,

and the average posterior SDs over all the examinees for this situation.
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Table 4.
RSMEs for the Different Scoring Techniques

No. of Prior RMSE Av. posterior SD
items variance ISM RSM Sch. 1 RSM Sch. 2 ISM RSM Sch. 1 RSM Sch. 2

4 1 0.88 0.88 0.88 0.75 0.76 0.76
4 25 2.73 2.70 2.75 2.32 2.35 2.40
16 1 0.49 0.49 0.49 0.48 0.48 0.49
16 25 1.15 1.17 1.21 0.80 0.83 0.88

The posterior means and SDs differ slightly over the three techniques, evident both from

the plots and the table. For the top row of plots, a negative correlation is the outcome of

shrinkage under Bayesian estimation with N (0, 1) prior. Because there are only four items,

there is little information about θ in the data, and hence the posterior mean is pooled

towards 0 for most examinees—this results in decrease of the difference (of the posterior

mean and the true value) as true ability increases. There is no visible pattern in the plots

in the second or third row. There is hardly any difference of RMSE or average posterior SD

for the three approaches to scoring.

Figure 7 compares posterior means and posterior SDs of examinee abilities under the

ISM, RSM Scheme 1, and RSM Scheme 2 when the prior variance is taken as 25 (i.e.,

the prior is more diffuse, making the posterior mean become close to the MLE). The

corresponding RMSEs and average posterior SDs are given in Table 4. The difference

between ISM and RSM is much more here than in Figure 6 for both mean and SDs. The

RSM produces slightly larger posterior SDs on average than the ISM. RSM Scheme 1 and

RSM Scheme 2 perform almost equally well. The RSM has a tendency to overestimate the

high posterior means and underestimate the low posterior means. We do not observe the

patterns as in Lewis (2001), Mislevy et al. (1994), or Tsutakawa and Johnson (1990) here.

The GRE will become a linear test (from adaptive) in the near future, and the above

analysis may not be the most appropriate to the GRE then. However, other CATs might

find the above results useful; also, even for the GRE, the above analysis (along with the

following) provides some idea about the practical impact of the lack of isomorphicity of the

item families.
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Figure 7. The comparison of posterior means and SDs of examinee abilities under the

ISM and the RSM for 4-item test for N (0, 52) population distribution.

6.2 Scoring for 16 Items

Now consider another scenario—one where each examinee answers 16 items, one from

each item family that appears in this example. Figure 8 compares posterior means and

posterior SDs of the examinee abilities under the ISM, RSM Scheme 1, and RSM Scheme

2 under this scenario when the prior variance is 1. As expected, the errors in ability

estimation are smaller here than in Figure 6. There is virtually no difference between ISM

and RSM (Scheme 1 or 2).
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Figure 8. The comparison of posterior means and SDs of examinee abilities under the

ISM and the RSM for 16-item test for N (0, 1) population distribution.

Figure 9 compares posterior means and posterior SDs of examinee abilities under the

ISM, RSM Scheme 1, and RSM Scheme 2 in this scenario when the prior variance is 25.

The amount of shrinkage of posterior means for both of these cases is much less than that

for four items, which is expected. The plots, especially those for the SDs, show some

outliers. The ISM results in smaller SDs on average compared to RSM Scheme 1 or RSM

Scheme 2. We observe the patterns as in Lewis (2001), Mislevy et al. (1994), or Tsutakawa

and Johnson (1990) to some extent here.
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Figure 9. The comparison of posterior means and SDs of examinee abilities under

the ISM and the RSM for 16-item test for large prior variance for N (0, 52) population

distribution.

6.3 Discussion

One more relevant factor for comparing ISM and RSM is computing time. The RSM

takes about twice as much as the ISM for calibration (both were calibrated using Fortran

77 programs) and takes about 8 to 10 times as much as the ISM for scoring.

It is possible to perform a more rigorous analysis here by simulating a full CAT using a

whole-item pool and examining the difference caused by the use of the ISM in the θ-scale

or in the scaled score, but this paper does not delve into that.
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The above results suggest that if the prior distribution of the ability distribution is

N (0, 1), then there is little difference between the ISM and RSM—therefore, there is

probably no need to use the more complicated RSM. Glas and van der Linden (2003), using

the same N (0, 1) prior distribution, obtained very similar results; in 48 cases (the cases

determined by the number of items, ratio of within-family and between-family variances,

etc.) of scoring that they consider, the mean absolute error (MAE) in ability estimation for

ISM is less than or equal to that of RSM in 19 cases and the MAE for ISM is never much

higher than that of RSM. Therefore, the evidence of misfit of the ISM in Section 5. is not of

much practical consequence. However, the above results also show that if one uses a more

diffuse prior distribution, like the N (0, 52) distribution (which leads to the posterior mean

being very close to the MLE), then the ISM may result in underestimation of variability

in ability estimation. Scoring was also performed by generating data from families with

family variances that are larger than the values obtained for the GRE data; in that case,

the difference in the posterior SDs of ISM and RSM is more prominent; also, the patterns

of difference between the two methods are quite similar to those observed by Lewis (2001),

such as the posterior SD for RSM is almost always larger than that of ISM and posterior

mean for ISM is smaller for that for RSM for large θs.

There is little difference between RSM Scheme 1 and RSM Scheme 2, that is, there is no

penalty for ignoring the variation of µ̂I(j) and Σ̂I(j).

The issue of scoring with model-based items needs further investigation. It is important

to figure out when ISM is preferable over RSM and vice-versa.

7. Conclusions

Due to flexible administration times, large-scale assessments such as the GRE require

large pools of items from which to draw a given test-taker’s examination, otherwise the

security of the items may be compromised. Item modeling initiatives develop numerous

items from a common item model as one way to populate these vast item pools. The

two main advantages to using these item models are: (a) they reduce the burden on test

developers, because the developers only need to create the item stem rather than all the

individual items; and (b) the family structure implied by the item generation models can

27



be utilized in calibration; only the families need to be calibrated, not each individual item.

This paper focuses on pretest data from the GRE that involved item models and attempts

to answer the research questions that are involved with these unique data.

There are three calibration techniques that can be utilized for item models: the

unrelated sibling model (USM), which ignores similarities within families; the identical

sibling model (ISM), which ignores variability within families; and the related siblings

model (RSM), which incorporates a hierarchical structure to relate items within a family.

Although the USM is the ideal calibration model, it requires that all items within a family

be calibrated separately, precluding its use in most practical situations. The ISM and RSM

have the advantage that the family can be calibrated once and the future items from these

families need not be calibrated separately.

This paper demonstrates by using simple descriptive statistics such as the variation

of proportion corrects within item families, and with more formal measures like posterior

predictive checks that the pretest items that were administered on the GRE do not behave

isomorphically, that is, there is some within-family variation in the behavior of the items.

In fact, there were some families where items behaved quite differently from their siblings

(closer inspection revealed intuitive reasons for the extra variation). A model such as the

ISM, which ignores within-family variation, will not be able to handle such unexpected

variation in the items within a family. As a contrast, the RSM handles such extra variation

quite nicely by simply returning a larger estimate for the within-family variation.

As discussed in Section 4.3, Graf et al. (2004) note that in order to make multiple-choice

items as isomorphic as possible, extreme care must be taken when selecting the distractors.

The RSM can be extended to include such collateral information, which would try to further

explain the within-family variation. For example, the model in (2) could be extended to

incorporate item-level predictors x (e.g., distractor information) with a regression model of

the form ηj ∼ N3(λI(j) + ζ ′x, T I(j)). This is a possible area for future research.

One surprising result found in this paper is that the more intuitive RSM provides little

gain over the rather restrictive ISM in scoring. Our original conjecture was that the RSM

correctly accounts for the variation within the item families (which is supported by the

statistical test in Section 5. that finds the ISM to have an inadequate fit to the data and
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finds the RSM to have a good fit), and hence scoring under the RSM would produce more

accurate scores, that is, the RMSE would be smaller (compared to the ISM) when the

RSM is utilized for scoring individuals. However, that conjecture is not supported by our

results. RSM does not perform much better than ISM regarding ability estimation in the

simulation results of Glas and van der Linden (2003), either. These findings may indicate

that the ISM is adequate (and that there is no need of the complicated RSM) for ability

estimation for the level of within-family variation present in GRE data, that is, the test

developers were able to control the within-family variation within acceptable limits so that

the assumption of interchangeable siblings is nearly satisfied so far as ability estimation

is concerned. The added value of the RSM then is to provide a more faithful accounting

of the data (as clear from the results of the posterior predictive checks) and to find item

families that are far from isomorphic so that item writers can use that knowledge to find

factors causing lack of isomorphicity and to remove them as far as possible. The RSM

also should provide an easy way of including collateral information. However, this is an

area that requires more research. On a related note, it will be useful to find a measure of

the level of lack of isomorphicity that can be tolerated for a particular problem—such a

measure will benefit the test administrators.
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